Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Environ Pollut ; 350: 124014, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642792

RESUMO

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668167

RESUMO

Solid oxide fuel cells (SOFCs) offer a significant advantage over other fuel cells in terms of flexibility in the choice of fuel. Ammonia stands out as an excellent fuel choice for SOFCs due to its easy transportation and storage, carbon-free nature and mature synthesis technology. For direct-ammonia SOFCs (DA-SOFCs), the development of anode catalysts that have efficient catalytic activity for both NH3 decomposition and H2 oxidation reactions is of great significance. Herein, we develop a Mo-doped La0.6Sr0.4Fe0.8Ni0.2O3-δ (La0.6Sr0.4Fe0.7Ni0.2Mo0.1O3-δ, LSFNM) material, and explore its potential as a symmetrical electrode for DA-SOFCs. After reduction, the main cubic perovskite phase of LSFNM remained unchanged, but some FeNi3 alloy nanoparticles and a small amount of SrLaFeO4 oxide phase were generated. Such reduced LSFNM exhibits excellent catalytic activity for ammonia decomposition due to the presence of FeNi3 alloy nanoparticles, ensuring that it can be used as an anode for DA-SOFCs. In addition, LSFNM shows high oxygen reduction reactivity, indicating that it can also be a cathode for DA-SOFCs. Consequently, a direct-ammonia symmetrical SOFC (DA-SSOFC) with the LSFNM-infiltrated doped ceria (LSFNM-SDCi) electrode delivers a superior peak power density (PPD) of 487 mW cm-2 at 800 °C when NH3 fuel is utilised. More importantly, because Mo doping greatly enhances the reduction stability of the material, the DA-SSOFC with the LSFN-MSDCi electrode exhibits strong operational stability without significant degradation for over 400 h at 700 °C.

3.
Cancer Med ; 13(8): e7178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659416

RESUMO

Non-small cell lung cancer (NSCLC) is increasing dramatically. It is believed that energy metabolism-related genes could play an important role in etiology of NSCLC. In this study, we sought to assess the correlation between three LEPR single nucleotide polymorphisms (rs1137101, rs1137100 and rs6588147) with NSCLS susceptibility. In total, 1193 NSCLC cases and 1056 controls were included. SNPscan™ genotyping method was used to analyze the genotypes of LEPR polymorphisms. Compared to rs6588147 GG in LEPR gene, this study identified a protective role of LEPR rs6588147 GA and GA/AA for the occurrence of NSCLC (GA vs. GG [p = 0.021] and GA/AA vs. GG [p = 0.030]). As well, we found that a protective role of LEPR rs6588147 for the occurrence of non-SCC subgroup (p < 0.05). By logistic regression analysis, we found that the rs6588147 A allele related genotypes might play a protective role for the occurrence of NSCLC in drinking, BMI ≥24 kg/m2, smoking and male subgroups. We also found that the rs1137101 A allele related genotypes played a protective role for the occurrence of NSCLC in male, younger participants (under 59 years) and overweight/obesity (BMI ≥24 kg/m2) subgroups. We found that LEPR Ars1037100Ars1037101Ars6588147 haplotype might play a protective role for the occurrence of NSCLC (p = 0.013). In addition, our findings indicated that LEPR rs1137100 G>A SNP might increase the risk of lymph node metastases (p = 0.038). This study highlights that LEPR rs6588147, rs1137101 genotypes and LEPR Ars1037100Ars1037101Ars6588147 haplotype are correlated with the occurrence of NSCLC. LEPR rs1137100 G>A SNP increases the risk of lymph node metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Predisposição Genética para Doença , Neoplasias Pulmonares , Polimorfismo de Nucleotídeo Único , Receptores para Leptina , Humanos , Receptores para Leptina/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Estudos de Casos e Controles , Genótipo , Idoso , Alelos , Estudos de Associação Genética
4.
Animals (Basel) ; 14(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612311

RESUMO

Duck egg production, like that of laying hens, follows a typical low-peak-low cycle, reflecting the dynamics of the reproductive system. Post-peak, some ducks undergo a cessation of egg laying, indicative of a regression process in the oviduct. Notably, the magnum, being the longest segment of the oviduct, plays a crucial role in protein secretion. Despite its significance, few studies have investigated the molecular mechanisms underlying oviduct regression in ducks that have ceased laying eggs. In this study, we conducted single-cell transcriptome sequencing on the magnum tissue of Shaoxing ducks at 467 days of age, utilizing the 10× Genomics platform. This approach allowed us to generate a detailed magnum transcriptome map of both egg-laying and ceased-laying ducks. We collected transcriptome data from 13,708 individual cells, which were then subjected to computational analysis, resulting in the identification of 27 distinct cell clusters. Marker genes were subsequently employed to categorize these clusters into specific cell types. Our analysis revealed notable heterogeneity in magnum cells between the egg-laying and ceased-laying ducks, primarily characterized by variations in cells involved in protein secretion and extracellular matrix (ECM)-producing fibroblasts. Specifically, cells engaged in protein secretion were predominantly observed in the egg-laying ducks, indicative of their role in functional albumen deposition within the magnum, a phenomenon not observed in the ceased-laying ducks. Moreover, the proportion of THY1+ cells within the ECM-producing fibroblasts was found to be significantly higher in the egg-laying ducks (59%) compared to the ceased-laying ducks (24%). Similarly, TIMP4+ fibroblasts constituted a greater proportion of the ECM-producing fibroblasts in the egg-laying ducks (83%) compared to the ceased-laying ducks (58%). These findings suggest a potential correlation between the expression of THY1 and TIMP4 in ECM-producing fibroblasts and oviduct activity during functional reproduction. Our study provides valuable single-cell insights that warrant further investigation into the biological implications of fibroblast subsets in the degeneration of the reproductive tract. Moreover, these insights hold promise for enhancing the production efficiency of laying ducks.

5.
Sci Total Environ ; 927: 172268, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583629

RESUMO

Due to the inappropriate disposal of waste materials containing lead (Pb) and irrigation with sewage containing Pb, the migration of Pb2+ within the soil profile has been extensively investigated. The conventional Pb2+ block method is challenging to implement due to its complex operational procedures and high construction costs. To address this issue, this study introduces the microbial-induced carbonate precipitation (MICP) technique as a novel approach to impede the migration of Pb2+ in the soil profile. Soil acclimatization with urea resulted in an increased proportion of urease-producing microorganisms, including Bacillus, Paenibacillus, and Planococcaceae, along with heightened expression of urea-hydrolyzing genes (UreA, UreB, UreC, and UreG). This indicates that urea-acclimatized soil (Soil-MICP) possesses the potential to induce carbonate precipitation. Batch Pb2+ fixation experiments confirmed that the fixation efficiency of Soil-MICP on Pb2+ exceeded that of soil without MICP, attributed to the MICP process within the Soil-MICP group. Dynamic migration experiments revealed that the MICP reaction transformed exchangeable lead into carbonate-bound Pb, effectively impeding Pb2+ migration in the soil profile. Additionally, the migration rate of Pb2+ in Soil-MICP was influenced by varying urea amounts, pH levels, and pore flow rates, leading to a slowdown in migration. The Two-site sorption model aptly described the Pb2+ migration process in the Soil-MICP column. This study aims to elucidate the MICP biomineralization process, uncover the in-situ blocking mechanism of MICP on lead in soil, investigate the impact of Pb on key genes involved in urease metabolism, enhance the comprehension of the chemical morphology of lead mineralization products, and provide a theoretical foundation for MICP technology in preventing the migration of Pb2+ in soil profiles.


Assuntos
Carbonatos , Chumbo , Microbiologia do Solo , Poluentes do Solo , Solo , Solo/química , Urease/metabolismo , Precipitação Química
6.
Sci Bull (Beijing) ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472019

RESUMO

Sulfate reduction is an essential metabolism that maintains biogeochemical cycles in marine and terrestrial ecosystems. Sulfate reducers are exclusively prokaryotic, phylogenetically diverse, and may have evolved early in Earth's history. However, their origin is elusive and unequivocal fossils are lacking. Here we report a new microfossil, Qingjiangonema cambria, from ∼518-million-year-old black shales that yield the Qingjiang biota. Qingjiangonema is a long filamentous form comprising hundreds of cells filled by equimorphic and equidimensional pyrite microcrystals with a light sulfur isotope composition. Multiple lines of evidence indicate Qingjiangonema was a sulfate-reducing bacterium that exhibits similar patterns of cell organization to filamentous forms within the phylum Desulfobacterota, including the sulfate-reducing Desulfonema and sulfide-oxidizing cable bacteria. Phylogenomic analyses confirm separate, independent origins of multicellularity in Desulfonema and in cable bacteria. Molecular clock analyses infer that the Desulfobacterota, which encompass a majority of sulfate-reducing taxa, diverged ∼2.41 billion years ago during the Paleoproterozoic Great Oxygenation Event, while cable bacteria diverged ∼0.56 billion years ago during or immediately after the Neoproterozoic Oxygenation Event. Taken together, we interpret Qingjiangonema as a multicellular sulfate-reducing microfossil and propose that cable bacteria evolved from a multicellular filamentous sulfate-reducing ancestor. We infer that the diversification of the Desulfobacterota and the origin of cable bacteria may have been responses to oxygenation events in Earth's history.

7.
Front Microbiol ; 15: 1343511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450171

RESUMO

Introduction: It is well-known that different populations and animals, even experimental animals with the same rearing conditions, differ in their susceptibility to obesity. The disparity in gut microbiota could potentially account for the variation in susceptibility to obesity. However, the precise impact of gut microbiota on gut metabolites and its subsequent influence on susceptibility to obesity remains uncertain. Methods: In this study, we established obesity-prone (OP) and obesity-resistant (OR) mouse models by High Fat Diet (HFD). Fecal contents of cecum were examined using 16S rDNA sequencing and untargeted metabolomics. Correlation analysis and MIMOSA2 analysis were used to explore the association between gut microbiota and intestinal metabolites. Results: After a HFD, gut microbiota and gut metabolic profiles were significantly different between OP and OR mice. Gut microbiota after a HFD may lead to changes in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), a variety of branched fatty acid esters of hydroxy fatty acids (FAHFAs) and a variety of phospholipids to promote obesity. The bacteria g_Akkermansia (Greengene ID: 175696) may contribute to the difference in obesity susceptibility through the synthesis of glycerophosphoryl diester phosphodiesterase (glpQ) to promote choline production and the synthesis of valyl-tRNA synthetase (VARS) which promotes L-Valine degradation. In addition, gut microbiota may affect obesity and obesity susceptibility through histidine metabolism, linoleic acid metabolism and protein digestion and absorption pathways.

8.
Schizophrenia (Heidelb) ; 10(1): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443399

RESUMO

Schizophrenia (SCZ), a highly heritable mental disorder, is characterized by cognitive impairment, yet the extent of the shared genetic basis between schizophrenia and cognitive performance (CP) remains poorly understood. Therefore, we aimed to explore the polygenic overlap between SCZ and CP. Specifically, the bivariate causal mixture model (MiXeR) was employed to estimate the extent of genetic overlap between SCZ (n = 130,644) and CP (n = 257,841), and conjunctional false discovery rate (conjFDR) approach was used to identify shared genetic loci. Subsequently, functional annotation and enrichment analysis were carried out on the identified genomic loci. The MiXeR analyses revealed that 9.6 K genetic variants are associated with SCZ and 10.9 K genetic variants for CP, of which 9.5 K variants are shared between these two traits (Dice coefficient = 92.8%). By employing conjFDR, 236 loci were identified jointly associated with SCZ and CP, of which 139 were novel for the two traits. Within these shared loci, 60 exhibited consistent effect directions, while 176 had opposite effect directions. Functional annotation analysis indicated that the shared genetic loci were mainly located in intronic and intergenic regions, and were found to be involved in relevant biological processes such as nervous system development, multicellular organism development, and generation of neurons. Together, our findings provide insights into the shared genetic architecture between SCZ and CP, suggesting common pathways and mechanisms contributing to both traits.

9.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460143

RESUMO

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Assuntos
Cadeia Alimentar , Metais Terras Raras , Herbivoria , Plantas , Solo , Alface
10.
Chemosphere ; 352: 141502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382715

RESUMO

Soil arsenic (As) contamination associated with the demolition of smelting plants has received increasing attention. Soil As can source from different industrial processes, and also participate in soil weathering, making its speciation rather complex. This study combined the usage of chemical sequential extraction and advanced spectroscopic techniques, e.g., time of flight secondary ion mass spectrometry (ToF-SIMS), to investigate the mineralogical transformation of soil As at different processing sites from a typical copper smelting plant in China. Results showed that the stability of arsenic species decreased following the processes of storage, smelting, and flue gas treatment. Arsenic in the warehouse area was incorporated into pyrite (FeS2) as well as its secondary minerals such as jarosite (KFe3(SO4)2(OH)6). At the smelting area, a large proportion of As was adsorbed by iron oxides from smelting slags, while some As existed in stable forms like orpiment (As2S3). At the acid-making area, more than half of As was adsorbed on amorphous iron oxides, and some were adsorbed on the flue gas desulfurization gypsum. More importantly, over 86% of the As belonged to non-specifically and specifically adsorbed fractions was found to be bioaccessible, highlighting the gypsum-adsorbed As one of the most hazardous species in smelting plant soils. Our findings indicated the importance of iron oxides in As retention and suggested the potential health risk of gypsum-adsorbed As. Such detailed knowledge of As speciation and bioaccessibility is vital for the management and remediation of As-contaminated soils in smelting plants.


Assuntos
Arsênio , Compostos Férricos , Poluentes do Solo , Arsênio/análise , Cobre/análise , Sulfato de Cálcio , Ferro/química , Solo/química , Óxidos/análise , Poluentes do Solo/análise
11.
Chemosphere ; 352: 141513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387657

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are widely spreading in our living environment, accumulating in the human body and potentially threating human health. The retina, which is a terminally differentiated extension of the central nervous system, is essential for the visual system. However, the effects and molecular mechanisms of MPs/NPs on retina development and function are still unclear. Here, we investigated the effects and modes of action of polystyrene NPs (PS-NPs) on the retina using mice as a mammalian model species. Maternal PS-NP exposure (100 nm) at an environmentally realistic concentration of 10 mg L-1 (or 2.07 *1010 particles mL-1) via drinking water from the first day of pregnancy till the end of lactation (21 days after birth) caused defective neural retinal development in the neonatal mice, by depositing in the retinal tissue and reducing the number of retinal ganglion cells and bipolar cells. Exposure to PS-NPs retarded retinal vascular development, while abnormal electroretinogram (ERG) responses and an increased level of oxidative stress were also observed in the retina of the progeny mice after maternal PS-NP exposure. Metabolomics showed significant dysregulation of amino acids that are pivotal to neuron retinal function, such as glutamate, aspartate, alanine, glycine, serine, threonine, taurine, and serotonin. Transcriptomics identified significantly dysregulated genes, which were enriched in processes of angiogenesis, visual system development and lens development. Regulatory analysis showed that Fos gene mediated pathways could be a potential key target for PS-NP exposure in retinal development and function. Our study revealed that maternal exposure to PS-NPs generated detrimental effects on retinal development and function in progeny mice, offering new insights into the visual toxicity of PS-NPs.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Feminino , Gravidez , Animais , Camundongos , Microplásticos , Poliestirenos/toxicidade , Exposição Materna/efeitos adversos , Plásticos , Metaboloma , Mamíferos
12.
Natl Sci Rev ; 11(3): nwae001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312376

RESUMO

This Perspective aims to provide a concise survey of current progress and outlook future directions in high-performance transistors and integrated circuits (ICs) based on 2D semiconductors.

13.
Commun Biol ; 7(1): 241, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418849

RESUMO

PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.


Assuntos
Reishi , Reishi/genética , Reishi/metabolismo , Regulação da Expressão Gênica , Epigênese Genética , Espectrometria de Massas , Arginina/metabolismo
14.
Ecotoxicol Environ Saf ; 272: 116035, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309234

RESUMO

A suspension of copper oxide nanoparticles (CuO NPs) is a mixture of dissolved and particulate Cu, the relative proportions of which highly depend on the water chemistry. However, the relationship between different proportions of particulate and dissolved Cu and the overall toxicity of CuO NPs is still unknown. This study investigated the response of Chlorella vulgaris to CuO NPs at varying solution pH and at different tannic acid (TA) additions, with a focus on exploring whether and how dissolved and particulate Cu contribute to the overall toxicity of CuO NPs. The results of the exposure experiments demonstrated the involvement of both dissolved and particulate Cu in inducing toxicity of CuO NPs, and the inhibition of CuO NPs on cell density of Chlorella vulgaris was found to be significantly (p < 0.05) alleviated with increased levels of TA and pH (< 8). Using the independent action model, the contribution to toxicity of particulate Cu was found to be enhanced with increasing pH values and TA concentrations. The toxic unit indicator better (R2 = 0.86, p < 0.001) explained impacts of CuO NPs on micro-algae cells than commonly used mass concentrations (R2 = 0.27-0.77, p < 0.05) across different levels of pH and TA. Overall, our study provides an additivity-based method to improve the accuracy of toxicity prediction through including contributions to toxicity of both dissolved and particulate Cu and through eliminating the uneven distribution of data due to large variations in total Cu, particulate Cu, dissolved Cu, Cu2+ activities, Cu-TA complexes and other Cu-complexes concentrations with varying water chemistry conditions.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Nanopartículas , Polifenóis , Cobre/toxicidade , Cobre/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água , Concentração de Íons de Hidrogênio
15.
Environ Sci Technol ; 58(1): 915-924, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38088029

RESUMO

Naturally occurring iron (Fe) minerals have been proved to activate persulfate (PS) to generate reactive species, but the role of soil-inherent Fe minerals in activating PS as well as the underlying mechanisms remains poorly understood. Here, we investigated sulfamethoxazole (SMX) degradation by PS in two Fe-rich soils and one Fe-poor soil. Unlike with the radical-dominant oxidation processes in Fe-poor soil, PS was effectively activated through nonradical pathways (i.e., surface electron-transfer) in Fe-rich soils, accounting for 68.4%-85.5% of SMX degradation. The nonradical mechanism was evidenced by multiple methods, including electrochemical, in situ Raman, and competition kinetics tests. Inherent Fe-based minerals, especially those containing Fe(II) were the crucial activators of PS in Fe-rich soils. Compared to Fe(III) minerals, Fe(II) minerals (e.g., ilmenite) were more liable to form Fe(II) mineral-PS* complexes to initiate the nonradical pathways, oxidizing adjacent SMX via electron transfer. Furthermore, mineral structural Fe(II) was the dominant component to coordinate such a direct oxidation process. After PS oxidation, low-crystalline Fe minerals in soils were transformed into high-crystalline Fe phases. Collectively, our study shows that soil-inherent Fe minerals can effectively activate PS in Fe-rich soils, so the addition of exogenous iron might not be required for PS-based in situ chemical oxidation. Outcomes also provide new insights into the activation mechanisms when persulfate is used for the remediation of contaminated soils.


Assuntos
Solo , Sulfametoxazol , Sulfametoxazol/análise , Sulfametoxazol/química , Compostos Férricos , Ferro/química , Minerais/química , Oxirredução , Compostos Ferrosos/química
16.
Phys Chem Chem Phys ; 26(3): 1929-1935, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38115787

RESUMO

High-purity 1T'-WS2 film has been experimentally synthesized [Nature Materials, 20, 1113-1120 (2021)] and theoretically predicted to be a two-dimensional (2D) superconducting material with Dirac cones [arXiv:2301.11425]. In the present work, we further study the superconducting properties of monolayer 1T'-WS2 by applying biaxial tensile strain. It is shown that the superconducting critical temperature Tc firstly increases and then decreases with respect to tensile strains, with the highest superconducting critical temperature Tc of 7.25 K under the biaxial tensile strain of 3%. In particular, we find that Dirac cones also exist in several tensile strained cases. Our studies show that monolayer 1T'-WS2 may provide a good platform for understanding the superconductivity of 2D Dirac materials.

17.
J Agric Food Chem ; 72(1): 166-175, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109361

RESUMO

Two phosphorus (P)-rich biowastes, sewage sludge (SS) and bone dreg (BD), were selected to clarify P footprints among biowaste, biochar, soil, and plants by introducing a novel "3R" concept model. Results showed that pyrolysis resulted in P transformation from an unstable-organic amorphous phase to a stable-inorganic crystalline phase with a P retention rate of 70-90% in biochar (P reservation). In soil, SSBC released more P in acid red soil and alkaline yellow soil than BDBC, while the opposite result appeared in neutral paddy soil. The P released from SSBC formed AlPO4 by combining with Al in soil, whereas P from BDBC transformed into Ca5(PO4)3F(or Cl) in conjunction with Ca in the soil (P replenishment). Various plants exhibited an uptake of approximately 2-6 times more P from biochar-amended soil than from the original soil (P reception). This study can guide the application of biochar in various soil-plant systems for effective nutrient reclamation.


Assuntos
Poluentes do Solo , Solo , Solo/química , Fósforo/química , Carvão Vegetal/química , Esgotos/química , Poluentes do Solo/análise
18.
J Environ Sci (China) ; 138: 141-152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135383

RESUMO

Ultra-low emission (ULE) technology retrofits significantly impact the particulate-bound mercury (Hg) emissions from coal-fired power plants (CFPPs); however, the distribution and bioavailability of Hg in size-fractioned particulate matter (PM) around the ULE-retrofitted CFPPs are less understood. Here, total Hg and its chemical speciation in TSP (total suspended particles), PM10 (aerodynamic particle diameter ≤ 10 µm) and PM2.5 (aerodynamic particle diameter ≤ 2.5 µm) around a ULE-retrofitted CFPP in Guizhou Province were quantified. Atmospheric PM2.5 concentration was higher around this ULE-retrofitted CFPP than that in the intra-regional urban cities, and it had higher mass Hg concentration than other size-fractioned PM. Total Hg concentrations in PM had multifarious sources including CFPP, vehicle exhaust and biomass combustion, while they were significantly higher in autumn and winter than those in other seasons (P < 0.05). Regardless of particulate size, atmospheric PM-bound Hg had lower residual fractions (< 21%) while higher HCl-soluble fractions (> 40%). Mass concentrations of exchangeable, HCl-soluble, elemental, and residual Hg in PM2.5 were higher than those in other size-fractioned PM, and were markedly elevated in autumn and winter (P < 0.05). In PM2.5, HCl-soluble Hg presented a significantly positive relationship with elemental Hg (P < 0.05), while residual Hg showed the significantly positive relationships with HCl-soluble Hg and elemental Hg (P < 0.01). Overall, these results suggested that atmospheric PM-bound Hg around the ULE-retrofitted CFPP tends to accumulate in finer PM, and has higher bioavailable fractions, while has potential transformation between chemical speciation.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Mercúrio/análise , Disponibilidade Biológica , Monitoramento Ambiental/métodos , Material Particulado/análise , Poeira , Centrais Elétricas , China , Carvão Mineral , Estações do Ano , Tamanho da Partícula
19.
Environ Sci Technol ; 57(50): 21370-21381, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37946506

RESUMO

Photoexcitation of natural semiconductor Fe(III) minerals has been proven to generate Fe(II), but the photogeneration of Fe(II) in Fe-rich surface soil as well as its role in the redox biogeochemistry of Cr(VI) remains poorly understood. In this work, we confirmed the generation of Fe(II) in soil by solar irradiation and proposed a new mechanism for the natural reductive detoxification of Cr(VI) to Cr(III) in surface soil. The kinetic results showed that solar irradiation promoted the reduction of Cr(VI) in Fe-rich soils, while a negligible Cr(VI) reduction was observed in the dark. Fe(II), mainly in the form of silicate-bound Fe(II), was generated under solar irradiation and responsible for the reduction of Cr(VI) in soils, which was evidenced by sequential extraction, transmission electron microscopy with electron energy loss spectroscopy, and electron transfer calculation. Photogenerated silicate-bound Fe(II) resulted from the massive clay-iron (hydr)oxide associations, consisting of iron (hydr)oxides (e.g., hematite and goethite) and kaolinite. These associations could generate Fe(II) under solar irradiation either via intrinsic excitation to produce photoelectrons or via the ligand-to-metal charge transfer process after the formation of clay-iron (hydr)oxide-organic matter complexes, which was proven by photoluminescence spectroscopy and X-ray photoelectron spectroscopy. These findings highlight the important role of photogenerated Fe(II) in Cr(VI) reduction in surface soil, which advances a fundamental understanding of the natural detoxification of Cr(VI) as well as the redox biogeochemistry of Cr(VI) in soil.


Assuntos
Compostos Férricos , Solo , Compostos Férricos/química , Solo/química , Argila , Cromo/química , Ferro/química , Silicatos , Oxirredução , Óxidos , Compostos Ferrosos
20.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...